


## Methods For Disposal Of Daily Mortality

□ Incineration

Burial pitRendering



- Acid Fermentation
- NaOH Digestion
- □ Alligators
- □ Composting





## Why Composting is a Good Choice

□ Biosecure

- No entry of off-farm vehicles
- Allows for immediate year-round disposal of carcasses
- High compost temperatures kill pathogens, insect pests

National Veterinary Services Laboratory, Ames, Iowa - Avian influenza virus not recovered after 10 days of composting

#### Why Composting is a Good Choice

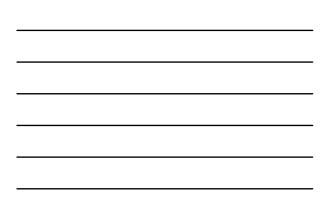
- □ Environmentally sound
  - Properly functioning composter gives off little odor, does not attract pests or contaminate groundwater
  - Turns waste into beneficial fertilizer and soil amendment
  - On-farm nutrient recycling


## Why Composting is a Good Choice

Cost effective

- Low to moderate start up costs
- Minimal operating costs

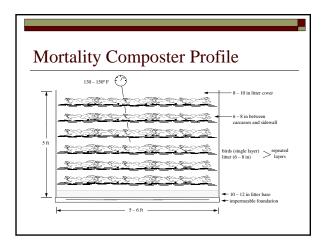
Comparison of Standard Disposal Methods


|                             | Composter<br>(10+ year life) | Incinerator<br>(3-5 year life) | Burial Pit<br>(5 year life)* |
|-----------------------------|------------------------------|--------------------------------|------------------------------|
| Initial Costs               | \$5,280<br>(3755 - 7825)     | \$1,350<br>(1000 - 1700)       | \$2,000<br>(1500 - 2500)     |
| Annualized<br>Initial Costs | \$352                        | \$225                          | \$400                        |
| Operating Costs             | \$2.25 / 100 lbs.            | \$3.50 / 100 lbs.              | None                         |
| Maintenance<br>Costs/Year   | \$53.00                      | \$135.00                       | Minimal                      |



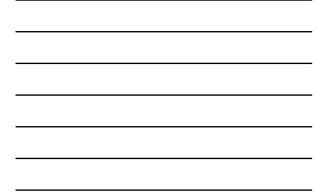
## Why Composting is a Good Choice

- □ Easy to accomplish
  - Requires only good management
  - Utilizes readily available organic materials typically found on farm









# Necessities for all-weather operation of composter

- Roof to control rainwater and percolation of runoff water
- Weight-bearing, impervious base (concrete preferred)
- Pressure-treated or rot-resistant materials that will resist the biological activity of composting
- □ Water and electricity availability









## Key Elements for Successful Composting

- □ Moisture
- Carbon:Nitrogen Ratio
- □ Aeration
- □ Temperature

#### Moisture

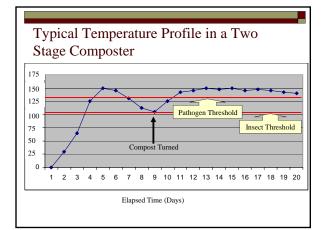
- □ 40-60 % is our target
- □ Moisture necessary for microbial activity
- Biological activity greatest when materials are uniformly saturated
- Compost after 2 heat cycles should have a moisture content similar to moist chewing tobacco



## Carbon:Nitrogen Ratio

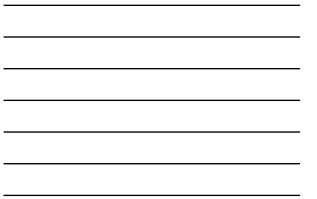
- 20-30:1 best for balanced diet for biological organisms
- □ Unbalanced ratio results in poor compost
  - excess ammonia releaseuneven product




## Aeration

- □ 14-17 % oxygen (hard to measure)
- Large amounts of oxygen consumed especially during the early stages (first 7 days)
- Additional infusion of oxygen is needed to continue/complete the composting process

## Temperature


- □ 130 to 150°F
- □ Indicator of microbial activity
- Temperatures above 130°F needed for destruction of pathogens, fly larvae and other insect pests











## Doing things right

- □ Compost will go through a heat cycle each time it is aerated
- □ Few insects will be present when the material is actively composting
- □ A well-designed and well-managed composter will not contribute to either the number or species of flies already present in the area
- Two-stage composting effectively inactivates avian and human pathogenic organisms, weed seeds, insect larvae

# Indicators that a Composter is not working well

- □ Failure to heat to a core temperature of 130°F
- $\hfill\square$  Production of considerable odor
- Discharge of dark colored liquid around the base
- □ Presence of large numbers of larvae and flies on and around the bins
- Presence of whole or partially decomposed carcasses when "completed" bins are opened



|             |                                 | Troubleshooting Guide                                |  |  |  |  |
|-------------|---------------------------------|------------------------------------------------------|--|--|--|--|
| Problem     | Probable Causes                 | Solutions                                            |  |  |  |  |
| Improper    | Too dry                         | Add water                                            |  |  |  |  |
| Temperature | Too wet                         | Add bulking material and turn pile                   |  |  |  |  |
| remperature | Improper C:N Ratio              | Evaluate bulking material and adjust as<br>necessary |  |  |  |  |
|             | Improper mixing of ingredients  | Layer ingredients appropriately                      |  |  |  |  |
|             | Adverse weather                 | Ensure adequate cover, water barriers                |  |  |  |  |
| Failure to  | Improper C:N Ratio              | Evaluate bulking material and adjust as necessary    |  |  |  |  |
| Decompose   | Carcasses layered too thick     | Single layer the carcasses                           |  |  |  |  |
|             | Carcasses on outside edges      | Maintain 6-8 inches between carcasses and walls      |  |  |  |  |
| Odor        | Too wet                         | Add bulking material and turn pile                   |  |  |  |  |
|             | Too low C:N Ratio               | Evaluate bulking material and adjust as<br>necessary |  |  |  |  |
|             | Low oxygen                      | Turn pile                                            |  |  |  |  |
|             | Inadequate cover over carcasses | Cover with 8 -10 inches of bulk material             |  |  |  |  |

## **Troubleshooting Guide**

| Problem               | Probable Causes                                                                                                 | Solutions                                                                                                                                                                      |
|-----------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Flies                 | Inadequate cover over carcasses<br>Poor sanitation conditions<br>Too wet<br>Failure to reach proper temperature | Maintain 8 – 10 inches cover<br>Avoid leaching from pile, standing water, trash<br>accumulation<br>Add bulking material and turn pile<br>Assess C:N ratio, ingredient layering |
| Scavenging<br>Animals | Inadequate cover over carcasses                                                                                 | Maintain 8 -10 inches cover<br>Avoid initial entry with fence or barrier                                                                                                       |

## Composting Checklist Summary

- □ Load mortality as a single layer
- □ Keep carcasses at least 6 inches from sidewalls
- □ Monitor temperatures regularly
- Properly turn and aerate material to keep process aerobic
- □ Keep carcasses covered with dry litter at all times to minimize odors, discourage scavengers and flies
- minimize odors, discourage scavengers and flie
  Add water carefully



## In the end...

- Resulting compost has chemical and physical properties similar to poultry litter
  Not recommended for application on home gardens
- Releases N at slower rate and over longer period of time
- Composting is a viable component of nutrient management planning

Casey W. Ritz, Ph.D. The University of Georgia <u>critz@uga.edu</u> 706-542-9139